Emission Rates of Multiple Air Pollutants Generated from Chinese Residential Cooking

Environ Sci Technol. 2018 Feb 6;52(3):1081-1087. doi: 10.1021/acs.est.7b05600. Epub 2018 Jan 24.

Abstract

Household air pollution generated from cooking is severe, especially for Chinese-style cooking. We measured the emission rates of multiple air pollutants including fine particles (PM2.5), ultrafine particles (UFPs), and volatile organic compounds (VOCs, including formaldehyde, benzene, and toluene) that were generated from typical Chinese cooking in a residential kitchen. The experiment was designed through five-factor and five-level orthogonal testing. The five key factors were cooking method, ingredient weight, type of meat, type of oil, and meat/vegetable ratio. The measured emission rates (mean value ± standard deviation) of PM2.5, UFPs, formaldehyde, total volatile organic compounds (TVOCs), benzene, and toluene were 2.056 ± 3.034 mg/min, 9.102 ± 6.909 × 1012 #/min, 1.273 ± 0.736 mg/min, 1.349 ± 1.376 mg/min, 0.074 ± 0.039 mg/min, and 0.004 ± 0.004 mg/min. Cooking method was the most influencing factor for the emission rates of PM2.5, UFPs, formaldehyde, TVOCs, and benzene but not for toluene. Meanwhile, the emission rate of PM2.5 was also significantly influenced by ingredient weight, type of meat, and meat/vegetable ratio. Exhausting the range hood decreased the emission rates by approximately 58%, with a corresponding air change rate of 21.38/h for the kitchen room.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants*
  • Air Pollution, Indoor*
  • Cooking
  • Environmental Monitoring
  • Housing
  • Particulate Matter

Substances

  • Air Pollutants
  • Particulate Matter