Reexamination of Dopaminergic Amacrine Cells in the Rabbit Retina: Confocal Analysis with Double- and Triple-labeling Immunohistochemistry

Exp Neurobiol. 2017 Dec;26(6):329-338. doi: 10.5607/en.2017.26.6.329. Epub 2017 Dec 18.

Abstract

Dopaminergic amacrine cells (DACs) are among the most well-characterized neurons in the mammalian retina, and their connections to AII amacrine cells have been described in detail. However, the stratification of DAC dendrites differs based on their location in the inner plexiform layer (IPL), raising the question of whether all AII lobules are modulated by dopamine release from DACs. The present study aimed to clarify the relationship between DACs and AII amacrine cells, and to further elucidate the role of dopamine at synapses with AII amacrine cell. In the rabbit retina, DAC dendrites were observed in strata 1, 3, and 5 of the IPL. In stratum 1, most DAC dendritic varicosities-the presumed sites of neurotransmitter release-made contact with the somata and lobular appendages of AII amacrine cells. However, most lobular appendages of AII amacrine cells localized within stratum 2 of the IPL exhibited little contact with DAC varicosities. In addition, double- or triple-labeling experiments revealed that DACs did not express the GABAergic neuronal markers anti-GABA, vesicular GABA transporter, or glutamic acid decarboxylase. These findings suggest that the lobular appendages of AII amacrine cells are involved in at least two different circuits. We speculate that the circuit associated with stratum 1 of the IPL is modulated by DACs, while that associated with stratum 2 is modulated by unknown amacrine cells expressing a different neuroactive substance. Our findings further indicate that DACs in the rabbit retina do not use GABA as a neurotransmitter, in contrast to those in other mammals.

Keywords: AII amacrine cell; Dopamine; GABA; Retinal circuit; Scotopic pathway.