Fe-N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts

ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2423-2429. doi: 10.1021/acsami.7b14443. Epub 2018 Jan 12.

Abstract

Transition metal/nitrogen/carbon (M-N/C) catalysts are considered as one of the most promising candidates to replace Pt/C catalysts for oxygen reduction reactions (ORRs). Here, we have designed novel reduced graphene oxide (rGO)-supported Fe-N-doped carbon (Fe-N-C/rGO) catalysts via simple pyrolysis of polypyrrole (Ppy)-FeO-GO composites. The as-prepared catalysts induced an onset potential of 0.94 V and a half-wave potential of 0.81 V in alkaline solutions, which is much better than those of the counterpart N-C and N-C/rGO catalysts and comparable to that of Pt/C catalysts. Moreover, the Fe-N-C/rGO catalysts showed improved durability and higher tolerance against methanol crossover than Pt/C in alkaline solutions. This superior ORR performance can be ascribed to the combined catalytic effect of both Fe-based nanoparticles (Fe3O4, Fe4C) and Fe-Nx sites, as well as fast mass transfer and accessible active sites benefiting from the mesoporous structure and high specific surface area. This work provides new insight for synthesis of a more promising nonplatinum electrocatalyst for metal-air batteries and fuel-cell applications.

Keywords: Fe−N−C catalyst; dual active sites; electrocatalysis; oxygen reduction reaction; porous carbon.