Effects of three IL-15 variants on NCI-H446 cell proliferation and expression of cell cycle regulatory molecules

Oncotarget. 2017 Nov 20;8(64):108108-108117. doi: 10.18632/oncotarget.22550. eCollection 2017 Dec 8.

Abstract

Interleukin 15 (IL-15) is a cytokine exhibiting antitumor characteristic similar to that of IL-2. However, in human tissues and cells, IL-15 expression and secretion is very limited, suggesting IL-15 functions mainly intracellularly. In the present study, we assessed the effects of transfecting NCI-H446 small cell lung cancer cells with genes encoding three IL-15 variants: prototypical IL-15, mature IL-15 peptide, and modified IL-15 in which the IL-2 signal peptide is substituted for the native signal peptide. NCI-H446 cells transfected with empty plasmid served as the control group. We found that IL-15 transfection effectively inhibited NCI-H446 cell proliferation and arrested cell cycle progression, with the modified IL-15 carrying the IL-2 signal peptide exerting the greatest effect. Consistent with those findings, expression each of the three IL-15 variants reduced growth of NCI-H446 xenograph tumors, and the modified IL-15 again showed the greatest effect. In addition, IL-15 expression led to down-regulation of the positive cell cycle regulators cyclin E and CDK2 and up-regulation of the negative cycle regulators p21 and Rb. These findings suggest IL-15 acts as a tumor suppressor that inhibits tumor cell proliferation by inducing cell cycle arrest.

Keywords: NCI-H446 cells; cell cycle; cell cycle regulatory molecule; cell proliferation; interleukin 15.