Spinal excitability is increased in the torque-depressed isometric steady state following active muscle shortening

R Soc Open Sci. 2017 Nov 22;4(11):171101. doi: 10.1098/rsos.171101. eCollection 2017 Nov.

Abstract

Torque depression (TD) is the reduction in steady-state isometric torque following active muscle shortening when compared with a purely isometric contraction at the same muscle length and level of activation. The purpose of the present study was to assess spinal and supraspinal excitability in the TD state during submaximal contractions of the dorsiflexors. Eleven young (24 ± 2 yrs) males performed 16 contractions at a constant level of electromyographic activity (40% of maximum). Half of the contractions were purely isometric (8 s at an ankle angle of 100°), whereas the other half induced TD (2 s isometric at 140°, a 1 s shortening phase at 40° s-1 and 5 s at 100°). Motor evoked potentials (MEPs), cervicomedullary motor evoked potentials (CMEPs) and compound muscle action potentials (M-waves) were recorded from tibialis anterior during the TD steady-state and purely isometric contractions. When compared with values in the purely isometric condition, following active shortening, there was a 13% decrease in torque (p < 0.05), with a 10% increase in normalized CMEP amplitude (CMEP/Mmax) (p < 0.05) and no change in normalized MEP amplitude (MEP/CMEP) in the TD state (p > 0.05). These findings indicate that during voluntary contractions in the TD state, the history-dependent properties of muscle can increase spinal excitability and influence voluntary control of submaximal torque production.

Keywords: History-Dependence of force; cervicomedullary electrical stimulation; concentric; electromyography; force depression; integrated electromyography; transcranial magnetic stimulation.

Associated data

  • figshare/10.6084/m9.figshare.c.3928321