Building Up a High-throughput Screening Platform to Assess the Heterogeneity of HER2 Gene Amplification in Breast Cancers

J Vis Exp. 2017 Dec 5:(130):56686. doi: 10.3791/56686.

Abstract

Targeted therapies against the human epidermal growth factor receptor 2 (HER2) have radically changed the outcome of patients with HER2-positive breast cancers. However, a minority of cases displays a heterogeneous distribution of HER2-positive cells, which generates major clinical challenges. To date, no reliable and standardized protocols for the characterization and quantification of HER2 heterogeneous gene amplification in large cohorts have been proposed. Here, we present a high-throughput methodology to simultaneously assess the HER2 status across different topographic areas of multiple breast cancers. In particular, we illustrate the laboratory procedure to construct enhanced tissue microarrays (TMAs) incorporating a targeted mapping of the tumors. All TMA parameters have been specifically optimized for the silver in situ hybridization (SISH) of formalin-fixed paraffin-embedded (FFPE) breast tissues. Immunohistochemical analysis of the prognostic and predictive biomarkers (i.e., ER, PR, Ki67, and HER2) should be performed using automated procedures. A customized SISH protocol has been implemented to allow a high-quality molecular analysis across multiple tissues that underwent different fixation, processing, and storage procedures. In this study, we provide a proof-of-principle that specific DNA sequences could be localized simultaneously in distinct topographic areas of multiple and heterogeneously processed breast cancers using an efficient and cost-effective method.

Publication types

  • Video-Audio Media

MeSH terms

  • Breast Neoplasms / enzymology
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology
  • Early Detection of Cancer / methods*
  • Female
  • Gene Amplification
  • HeLa Cells
  • High-Throughput Screening Assays / methods*
  • Humans
  • In Situ Hybridization, Fluorescence / methods
  • Receptor, ErbB-2 / genetics*

Substances

  • ERBB2 protein, human
  • Receptor, ErbB-2