Formation Mechanism and Dispersion of Pseudo-Tetragonal BaTiO₃-PVP Nanoparticles from Different Titanium Precursors: TiCl₄ and TiO₂

Materials (Basel). 2017 Dec 29;11(1):51. doi: 10.3390/ma11010051.

Abstract

Nano-sized tetragonal BaTiO₃ (BT) particles that are well dispersed in solution are essential for the dielectric layer in multilayer ceramic capacitor technology. A hydrothermal process using TiCl₄ and BaCl₂, as source of Ti and Ba, respectively, or the precursor TiO₂ as seed for the formation of BT, and poly(vinylpyrrolidone) (PVP) as a surfactant, was employed in this study to enhance both the dispersibility and tetragonality (c/a) simultaneously in a single reaction process. The process parameters, i.e., the ratio of TiO₂ substitution of TiCl₄, the reaction time, and PVP content were systematically studied, and the growth mechanism and relation between the tetragonality and the particle size are discussed. Dynamic light scattering (DLS) analysis was used to show that truncated pseudo-tetragonal BT-PVP particles with an average size of 100 nm, having a narrow size distribution and a coefficient of variation (CV) as low as 20% and being mono-dispersed in water, were produced. The narrow particle size distribution is attributed to the ability of PVP to inhibit the growth of BT particles, and the high c/a of BT-PVP to heterogeneous particle growth using TiO₂ seeds.

Keywords: BaTiO3; c/a; dispersion; hydrothermal; poly(vinylpyrrolidone).