Gene delivery and gene expression in vertebrate using baculovirus Bombyx mori nucleopolyhedrovirus vector

Oncotarget. 2017 Nov 20;8(62):106017-106025. doi: 10.18632/oncotarget.22522. eCollection 2017 Dec 1.

Abstract

The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) has been investigated as a possible tool for gene therapy, but its inhibition by complement proteins in human serum limits its applicability. Here, we used the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) to construct a gene delivery vector in which a reporter gene is driven by a cytomegalovirus IE promoter. Enhanced green fluorescent protein (EGFP) and luciferase reporter genes were used to test the efficiency of gene delivery. In vitro complement inactivation data showed that the recombinant BmNPV vector was more stable in human serum than the recombinant AcMNPV vector. The recombinant BmNPV vector successfully delivered the reporter genes into different tissues and organs in mice and chicks. These results demonstrate that the BmNPV vector is more stability against complement inactivation in human serum than the AcMNPV vector, and indicate that it may be useful as an effective gene delivery vector for gene therapy in vertebrates.

Keywords: Bombyx mori nucleopolyhedrovirus; complement resistance; gene delivery.