Ginseng Rh2 protects endometrial cells from oxygen glucose deprivation/re-oxygenation

Oncotarget. 2017 Nov 11;8(62):105703-105713. doi: 10.18632/oncotarget.22390. eCollection 2017 Dec 1.

Abstract

In this study, oxygen glucose deprivation/re-oxygenation (OGDR) was applied to cultured endometrial cells to mimic ischemic-reperfusion injuries. We also tested the potential effect of Ginseng Rh2 (GRh2) against the process. In established T-HESC human endometrial cells and primary murine endometrial cells, GRh2 largely inhibited OGDR-induced viability reduction and cell death. Remarkably, OGDR induced programmed necrosis in the endometrial cells, evidenced by cyclophilin D-p53-adenine nucleotide translocator 1 (ANT-1) mitochondrial association, mitochondrial depolarization, reactive oxygen species production, and lactate dehydrogenase release. Notably, such effects by OGDR were largely attenuated with co-treatment of GRh2. Further, cyclophilin D inhibition or knockdown also protected endometrial cells from OGDR. On the other hand, forced over-expression of cyclophilin D facilitated OGDR-induced T-HESC cell necrosis, which was dramatically inhibited by GRh2. Together, GRh2 protects endometrial cells from OGDR possibly via inhibiting CypD-dependent programmed necrosis pathway.

Keywords: Ginseng Rh2; cyclophilin; endometrial cells; oxygen glucose deprivation/re-oxygenation; programmed necrosis.