Comparison of naturally aging and D-galactose induced aging model in beagle dogs

Exp Ther Med. 2017 Dec;14(6):5881-5888. doi: 10.3892/etm.2017.5327. Epub 2017 Oct 18.

Abstract

Animal models have been used to study aging for decades. In numerous aging studies, beagles are the most commonly used breed of dog. However, few studies have compared between naturally aging models and experimentally induced aging models in beagle dogs. In the present study, a D-galactose induced aging model was compared with a naturally aging model, and young adult dogs were considered as the young control group. The level of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum, and brain tissue were measured. Histopathological comparisons of the liver, kidneys, heart, lungs and spleen were evaluated using hematoxylin and eosin (H&E) staining, in addition, the brain was evaluated by H&E staining, and Nissl staining. The expression levels of aging-associated factors in the hippocampus, including proliferating cell nuclear antigen (PCNA), P16 and P21 were also determined through reverse transcription quantitative-polymerase chain reaction, and western blot analysis. The results indicated that D-galactose induced aging significantly increased the MDA level, while the levels of SOD and GSH-Px were diminished when compared with the young control group, which was similar to the naturally aging group. Parallel histopathological features were observed in the D-galactose induced aging and naturally aging groups compared with the young control group. However, a reduced expression level of PCNA, and increased expression levels of P16 and P21 were observed in the naturally ageing and induced aging groups compared with the young control group. The results of the current study demonstrated that the beagle dogs in D-galactose induced aging model exhibited significant similarities with the naturally aging model, providing evidence to support that the D-galactose induced aging model may be applied to aging studies.

Keywords: aging; animal model; beagle dogs; induced aging.