Bat-inspired integrally actuated membrane wings with leading-edge sensing

Bioinspir Biomim. 2017 Dec 28;13(1):016013. doi: 10.1088/1748-3190/aa9a7b.

Abstract

This paper presents a numerical investigation on the closed-loop performance of a two-dimensional actuated membrane wing with fixed supports. The proposed concept mimics aerodynamic sensing and actuation mechanisms found in bat wings to achieve robust outdoor flight: firstly, variable membrane tension, which is obtained in bats through skeleton articulation, is introduced through a dielectric-elastomer construction; secondly, leading-edge airflow sensing is achieved with bioinspired hair-like sensors. Numerical results from a coupled aero-electromechanical model show that this configuration can allow for the tracking of prescribed lift coefficient signals in the presence of disturbances from atmospheric gusts. In particular, disturbance measurements through the hair sensor (a feedforward control strategy) are seen to provide substantial advantage with respect to a reactive (feedback) control strategy determining a reduction of the oscillations of the lift coefficient.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Chiroptera*
  • Equipment Design
  • Feedback
  • Flight, Animal / physiology*
  • Models, Biological*
  • Wings, Animal / physiology*