Rlim-Dependent and -Independent Pathways for X Chromosome Inactivation in Female ESCs

Cell Rep. 2017 Dec 26;21(13):3691-3699. doi: 10.1016/j.celrep.2017.12.004.

Abstract

During female mouse embryogenesis, two forms of X chromosome inactivation (XCI) ensure dosage compensation from sex chromosomes. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X (Xp), and this pattern is maintained in extraembryonic cell types. Epiblast cells, which give rise to the embryo proper, reactivate the Xp (XCR) and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI depend on the long non-coding RNA Xist. The ubiquitin ligase RLIM is required for iXCI in vivo and occupies a central role in current models of rXCI. Here, we demonstrate the existence of Rlim-dependent and Rlim-independent pathways for rXCI in differentiating female ESCs. Upon uncoupling these pathways, we find more efficient Rlim-independent XCI in ESCs cultured under physiological oxygen conditions. Our results revise current models of rXCI and suggest that caution must be taken when comparing XCI studies in ESCs and mice.

Keywords: EB differentiation; ESC; Rlim; Rlim-independent XCI; Rnf12; X chromosome inactivation; XCI; XCI regulation; Xist; physiological oxygen levels.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Culture Techniques
  • Female
  • Mice
  • Mouse Embryonic Stem Cells / metabolism*
  • Mutant Proteins / metabolism
  • Ubiquitin-Protein Ligases / metabolism*
  • X Chromosome Inactivation / genetics*

Substances

  • Mutant Proteins
  • Rlim protein, mouse
  • Ubiquitin-Protein Ligases