Improvement in xylooligosaccharides production by knockout of the β- xyl1 gene in Trichoderma orientalis EU7-22

3 Biotech. 2018 Jan;8(1):26. doi: 10.1007/s13205-017-1041-x. Epub 2017 Dec 20.

Abstract

The goal of this study was to enhance the production of xylooligosaccharides (XOs) and reduce the production of xylose. We investigated β-xylosidases, which were key enzymes in the hydrolysis of xylan into xylose, in Trichoderma orientalis EU7-22. The binary vector pUR5750G/bxl::hph was constructed to knock out the β-xyl1 gene (encoding β-xylosidases) in T. orientalis EU7-22 by homologous integration, producing the mutant strain T. orientalis Bxyl-1. Xylanase activity for strain Bxyl-1 was 452.42 IU/mL, which increased by only 0.07% compared to that of parental strain EU7-22, whereas β-xylosidase activity was 0.06 IU/mL, representing a 91.89% decrease. When xylanase (200 IU/g xylan), produced by T. orientalis EU7-22 and T. orientalis Bxyl-1, was used to hydrolyze beechwood xylan, in contrast to the parental strain, the XOs were enhanced by 83.27%, whereas xylose decreased by 45.80% after 36 h in T. orientalis Bxyl-1. Based on these results, T. orientalis Bxyl-1 has great potential for application in the production of XOs from lignocellulosic biomass.

Keywords: Trichoderma orientalis; Xylanase; Xylooligosaccharides; Xylose; β-xyl1 gene; β-xylosidase.