Development of Institutional Guidelines for Management of Gram-Negative Bloodstream Infections: Incorporating Local Evidence

Hosp Pharm. 2017 Nov;52(10):691-697. doi: 10.1177/0018578717720506. Epub 2017 Jul 21.

Abstract

Background: Appropriate empirical antimicrobial therapy is associated with improved outcomes of patients with Gram-negative bloodstream infections (BSI). Objective: Development of evidence-based institutional management guidelines for empirical antimicrobial therapy of Gram-negative BSI. Methods: Hospitalized adults with Gram-negative BSI in 2011-2012 at Palmetto Health hospitals in Columbia, SC, USA, were identified. Logistic regression was used to examine the association between site of infection acquisition and BSI due to Pseudomonas aeruginosa or chromosomally mediated AmpC-producing Enterobacteriaceae (CAE). Antimicrobial susceptibility rates of bloodstream isolates were stratified by site of acquisition and acute severity of illness. Retained antimicrobial regimens had predefined susceptibility rates ≥90% for noncritically ill and ≥95% for critically ill patients. Results: Among 390 patients, health care-associated (odds ratio [OR]: 3.0, 95% confidence interval [CI]: 1.5-6.3] and hospital-acquired sites of acquisition (OR: 3.7, 95% CI: 1.6-8.4) were identified as risk factors for BSI due to P aeruginosa or CAE, compared with community-acquired BSI (referent). Based on stratified bloodstream antibiogram, ceftriaxone met predefined susceptibility criteria for community-acquired BSI in noncritically ill patients (95%). Cefepime and piperacillin-tazobactam monotherapy achieved predefined susceptibility criteria in noncritically ill (95% both) and critically ill patients with health care-associated and hospital-acquired BSI (96% and 97%, respectively) and critically ill patients with community-acquired BSI (100% both). Conclusions: Incorporation of site of acquisition, local antimicrobial susceptibility rates, and acute severity of illness into institutional guidelines provides objective evidence-based approach for optimizing empirical antimicrobial therapy for Gram-negative BSI. The suggested methodology provides a framework for guideline development in other institutions.

Keywords: Enterobacter cloacae; Escherichia coli; antibiotics; bacteremia; sepsis.