Reversible Laser-Induced Bending of Pseudorotaxane Crystals

J Am Chem Soc. 2018 Jan 10;140(1):90-93. doi: 10.1021/jacs.7b10998. Epub 2017 Dec 27.

Abstract

This study investigated the dynamic photoresponse of pseudorotaxane crystals with azobenzene and ferrocenyl groups in the axle component. X-ray crystallography showed pseudorotaxanes with a methylazobenzene group and a dibromophenylene ring in the cyclic component to exhibit twisting of the trans-azobenzene groups at torsion angles of 17° and 38°, respectively. Repeated alternating laser irradiation of the crystals at 360 and 445 nm produced bending of 20-30° in opposite directions, with no evidence of decay. Under 445 nm irradiation, bending took place within 0.3 s. A crystal of nonsubstituted pseudorotaxane showed bending of only 2° under 360 nm irradiation due to multiple π-π interactions between the planar trans-azobenzene groups. The pseudorotaxane crystals have two chromophores, bent rapidly and reversibly on irradiation at rates depending on the molecular structure.

Publication types

  • Research Support, Non-U.S. Gov't