Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment

ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1897-1908. doi: 10.1021/acsami.7b15008. Epub 2018 Jan 5.

Abstract

Organometal halide CH3NH3PbI3 (MAPbI3) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI3 phase with trace of Cl- is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI3 to phase-pure MAPbCl3, demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI3-based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.

Keywords: gas−solid reaction; organometal halide; perovskite solar cells; phase engineering; vapor annealing.