Tuning the Doping Types in Graphene Sheets by N Monoelement

Nano Lett. 2018 Jan 10;18(1):386-394. doi: 10.1021/acs.nanolett.7b04249. Epub 2017 Dec 27.

Abstract

The doping types of graphene sheets are generally tuned by different dopants with either three or five valence electrons. As a five-valence-electrons element, however, nitrogen dopants in graphene sheets have several substitutional geometries. So far, their distinct effects on electronic properties predicted by theoretical calculations have not been well identified. Here, we demonstrate that the doping types of graphene can be tuned by N monoelement under proper growth conditions using chemical vapor deposition (CVD), characterized by combining scanning tunneling microscopy/spectroscopy, X-ray/ultraviolet photoelectron spectroscopy, Hall effect measurement, Raman spectroscopy, and density functional theory calculations. We find that a relatively low partial pressure of CH4 (mixing with NH3) can lead to the growth of dominant pyridinic N substitutions in graphene, in contrast with the growth of dominant graphitic N substitutions under a higher partial pressure of CH4. Our results unambiguously confirm that the pyridinic N leads to the p-type doping, and the graphitic N leads to the n-type doping. Interestingly, we also find that the pyridinic N and the graphitic N are preferentially separated in different domains. Our findings shed light on continuously tuning the doping level of graphene monolayers by using N monoelement, which can be very convenient for growth of functional structures in graphene sheets.

Keywords: Graphene; doping types; graphitic N substitutions; pyridinic N substitutions.

Publication types

  • Research Support, Non-U.S. Gov't