Cryo-Electron Microscopy Structure of Seneca Valley Virus Procapsid

J Virol. 2018 Feb 26;92(6):e01927-17. doi: 10.1128/JVI.01927-17. Print 2018 Mar 15.

Abstract

Seneca Valley virus (SVV), like some other members of the Picornaviridae, forms naturally occurring empty capsids, known as procapsids. Procapsids have the same antigenicity as full virions, so they present an interesting possibility for the formation of stable virus-like particles. Interestingly, although SVV is a livestock pathogen, it has also been found to preferentially infect tumor cells and is being explored for use as a therapeutic agent in the treatment of small-cell lung cancers. Here we used cryo-electron microscopy to investigate the procapsid structure and describe the transition of capsid protein VP0 to the cleaved forms of VP4 and VP2. We show that the SVV receptor binds the procapsid, as evidence of its native antigenicity. In comparing the procapsid structure to that of the full virion, we also show that a cage of RNA serves to stabilize the inside surface of the virus, thereby making it more acid stable.IMPORTANCE Viruses are extensively studied to help us understand infection and disease. One of the by-products of some virus infections are the naturally occurring empty virus capsids (containing no genome), termed procapsids, whose function remains unclear. Here we investigate the structure and formation of the procapsids of Seneca Valley virus, to better understand how they form, what causes them to form, how they behave, and how we can make use of them. One potential benefit of this work is the modification of the procapsid to develop it for targeted in vivo delivery of therapeutics or to make a stable vaccine against SVV, which could be of great interest to the agricultural industry.

Keywords: Seneca Valley virus; cryo-electron microscopy; picornavirus; procapsid.

MeSH terms

  • Capsid / ultrastructure*
  • Capsid Proteins / chemistry*
  • Cryoelectron Microscopy / methods*
  • Genome, Viral
  • Humans
  • Lung Neoplasms / virology
  • Models, Molecular
  • Picornaviridae / ultrastructure*
  • Picornaviridae Infections / virology
  • Protein Conformation
  • Tumor Cells, Cultured
  • Virion / ultrastructure*
  • Virus Assembly*

Substances

  • Capsid Proteins

Supplementary concepts

  • Senecavirus A