Chaoborus spp. Transport CH4 from the Sediments to the Surface Waters of a Eutrophic Reservoir, But Their Contribution to Water Column CH4 Concentrations and Diffusive Efflux Is Minor

Environ Sci Technol. 2018 Feb 6;52(3):1165-1173. doi: 10.1021/acs.est.7b04384. Epub 2018 Jan 12.

Abstract

Chaoborus spp. (midge larvae) live in the anoxic sediments and hypolimnia of freshwater lakes and reservoirs during the day and migrate to the surface waters at night to feed on plankton. It has recently been proposed that Chaoborus take up methane (CH4) from the sediments in their tracheal gas sacs, use this acquired buoyancy to ascend into the surface waters, and then release the CH4, thereby serving as a CH4 "pump" to the atmosphere. We tested this hypothesis using diel surveys and seasonal monitoring, as well as incubations of Chaoborus to measure CH4 transport in their gas sacs at different depths and times in a eutrophic reservoir. We found that Chaoborus transported CH4 from the hypolimnion to the lower epilimnion at dusk, but the overall rate of CH4 transport was minor, and incubations revealed substantial variability in CH4 transport over space and time. We calculated that Chaoborus transport ∼0.1 mmol CH4 m-2 yr-1 to the epilimnion in our study reservoir, a very low proportion (<1%) of total CH4 diffusive flux during the summer stratified period. Our data further indicate that CH4 transport by Chaoborus is sensitive to water column mixing, Chaoborus density, and Chaoborus species identity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Atmosphere
  • Chironomidae*
  • Lakes*
  • Methane
  • Seasons

Substances

  • Methane