Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle

Nat Commun. 2017 Dec 19;8(1):2186. doi: 10.1038/s41467-017-02275-9.

Abstract

The low-velocity layer (LVL) atop the 410-km discontinuity has been widely attributed to dehydration melting. In this study, we experimentally reproduced the wadsleyite-to-olivine phase transformation in the upwelling mantle across the 410-km discontinuity and investigated in situ the sound wave velocity during partial melting of hydrous peridotite. Our seismic velocity model indicates that the globally observed negative Vs anomaly (-4%) can be explained by a 0.7% melt fraction in peridotite at the base of the upper mantle. The produced melt is richer in FeO (~33 wt.%) and H2O (~16.5 wt.%) and its density is determined to be 3.56-3.74 g cm-3. The water content of this gravitationally stable melt in the LVL corresponds to a total water content in the mantle transition zone of 0.22 ± 0.02 wt.%. Such values agree with estimations based on magneto-telluric observations.

Publication types

  • Research Support, Non-U.S. Gov't