Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States

Environ Sci Technol. 2017 Dec 19;51(24):14472-14482. doi: 10.1021/acs.est.7b05110.

Abstract

Land-cover change from energy development, including solar energy, presents trade-offs for land used for the production of food and the conservation of ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development on nonconventional surfaces can mitigate land scarcity is understudied. Here, we evaluate the land sparing potential of solar energy development across four nonconventional land-cover types: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics), within the Great Central Valley (CV, CA), a globally significant agricultural region where land for food production, urban development, and conservation collide. Furthermore, we calculate the technical potential (TWh year-1) of these land sparing sites and test the degree to which projected electricity needs for the state of California can be met therein. In total, the CV encompasses 15% of CA, 8415 km2 of which was identified as potentially land-sparing for solar energy development. These areas comprise a capacity-based energy potential of at least 17 348 TWh year-1 for photovoltaic (PV) and 2213 TWh year-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy sprawl in agricultural landscapes.

MeSH terms

  • Agriculture*
  • California
  • Conservation of Natural Resources*
  • Ecosystem
  • Environment
  • Solar Energy*
  • United States