Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence

Langmuir. 2018 Jan 16;34(2):630-638. doi: 10.1021/acs.langmuir.7b03790. Epub 2018 Jan 3.

Abstract

Monoclonal antibodies (mAbs) are proteins that uniquely identify targets within the body, making them well-suited for therapeutic applications. However, these amphiphilic molecules readily adsorb onto air-solution interfaces where they tend to aggregate. We investigated two mAbs with different propensities to aggregate at air-solution interfaces. The understanding of the interfacial rheological behavior of the two mAbs is crucial in determining their aggregation tendency. In this work, we performed interfacial stress relaxation studies under compressive step strain using a custom-built dilatational rheometer. The dilatational relaxation modulus was determined for these viscoelastic interfaces. The initial value and the equilibrated value of relaxation modulus were larger in magnitude for the mAb with a higher tendency to aggregate in response to interfacial stress. We also performed single-bubble coalescence experiments using a custom-built dynamic fluid-film interferometer (DFI). The bubble coalescence times also correlated to the mAbs aggregation propensity and interfacial viscoelasticity. To study the influence of surfactants in mAb formulations, polyethylene glycol (PEG) was chosen as a model surfactant. In the mixed mAb/PEG system, we observed that the higher aggregating mAb coadsorbed with PEG and formed domains at the interface. In contrast, for the other mAb, PEG entirely covered the interface at the concentrations studied. We studied the mobility of the interfaces, which was manifested by the presence or the lack of Marangoni stresses. These dynamics were strongly correlated with the interfacial viscoelasticity of the mAbs. The influence of competitive destabilization in affecting the bubble coalescence times for the mixed mAb/PEG systems was also studied.

Publication types

  • Research Support, Non-U.S. Gov't