Electrokinetic investigation of deposition of cationic fabric softener vesicles on anionic porous cotton fabrics

J Colloid Interface Sci. 2018 Mar 15:514:132-145. doi: 10.1016/j.jcis.2017.11.062. Epub 2017 Nov 22.

Abstract

Hypothesis: Colloidal deposition on porous substrates is a complex process influenced by both, (i) characteristics of colloidal permeation into porous substrates, and (ii) mechanism of colloidal deposition on solid surfaces. Such processes are quintessential to action of products such as hair conditioners and fabric softeners where the substrates to be treated are porous. The performance of these formulations is linked with the distribution of deposited colloids across porous substrates i.e. whether deposition is localized near substrate periphery, or deposition is homogeneously distributed.

Experiments: In this work, we investigate the deposition of cationic vesicles, commonly used in fabric softeners, on anionic porous cotton yarns via spectrophotometric measurement of adsorption density of vesicles on yarns and electrokinetic measurement of cotton yarn apparent zeta potentials. Under the employed conditions, cotton yarn apparent zeta potentials are sensitive predominantly to external yarn surfaces. Therefore, these measurements can distinguish between deposition on external and internal yarn surfaces.

Findings: The phase behavior of lipid bilayers constituting the vesicles is identified as an important governing factor with solid-gel vesicles depositing more near yarn periphery, and liquid-crystalline vesicles depositing more uniformly throughout the yarns. Bulk electrical conductivity also influences the distribution of deposited vesicles. The results are explained with the help of a newly proposed theory.

Keywords: Cellulose; Cotton; Deposition; Fabric softener; Lipids; Streaming potential.