Transparent electrode design for AlGaN deep-ultraviolet light-emitting diodes

Opt Express. 2017 Dec 11;25(25):32206-32213. doi: 10.1364/OE.25.032206.

Abstract

Zinc gallate (ZnGa2O4; ZGO) thin films were employed as the p-type transparent contact layer in deep-ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The transmittance of 200-nm-thick ZGO in deep-ultraviolet wavelength (280 nm) was as high as 92.3%. Two different ohmic contact structures, a dot-LED (D-LED; ZGO/dot-ITO/LED) and whole-LED (W-LED; ZGO/ITO/LED), exhibited improved light output power and current spreading compared to a conventional ITO-LED (C-LED). At an injection current of 20 mA, the D-LED and W-LED exhibited 33.7% and 12.3% enhancements in light output power, respectively, compared to the C-LED. The enhanced light output power of the D-LED can be attributed to an improvement in current spreading and enhanced light-extracting efficiency achieved by introducing ZGO/dot-ITO.