Optical encryption via monospectral integral imaging

Opt Express. 2017 Dec 11;25(25):31516-31527. doi: 10.1364/OE.25.031516.

Abstract

Optical integral imaging (II) uses a lenslet array and CCD sensor as the 3D acquisition device, in which the multispectral information is acquired by a color filter array (CFA). However, color crosstalk exists in CFA that diminishes color gamut, resulting in the reduced resolution. In this paper, we present a monospectral II encryption approach with a monospectral camera array (MCA). The monospectral II system captures images with the MCA that can eliminate color crosstalk among the adjacent spectral channels. It is noteworthy that the captured elemental images (EIs) from the colored scene belong to grayscale; the colored image encryption is converted to grayscale encryption. Consequently, this study will significantly save the calculation load in image encoding and decoding (nearly reduced 2/3) compared with the similar works. Afterwards, an optimized super-resolution reconstruction algorithm is introduced to improve the viewing resolution.