Photonic jets for highly efficient mid-IR focal plane arrays with large angle-of-view

Opt Express. 2017 Dec 11;25(25):31174-31185. doi: 10.1364/OE.25.031174.

Abstract

One of the trends in design of mid-wave infrared (MWIR) focal plane arrays (FPAs) consists in reduction of the pixel sizes which allows increasing the resolution and decreasing the dark currents of FPAs. To keep high light collection efficiency and to combine it with large angle-of-view (AOV) of FPAs, in this work we propose to use photonic jets produced by the dielectric microspheres for focusing and highly efficient coupling light into individual photodetector mesas. In this approach, each pixel of FPA is integrated with the appropriately designed, fixed and properly aligned microsphere. The tasks consist in developing technology of integration of microspheres with pixels on a massive scale and in developing designs of corresponding structures. We propose to use air suction through a microhole array for assembling ordered arrays of microspheres. We demonstrate that this technology allows obtaining large-scale arrays containing thousands of microspheres with ~1% defect rate which represents a clear advantage over the best results obtained by the techniques of directed self-assembly. We optimized the designs of such FPAs integrated with microspheres for achieving maximal angle of view (AOV) as a function of the index of refraction and diameter of the microspheres. Using simplified two-dimensional finite difference time domain (FDTD) modeling we designed structures where the microspheres are partly-immersed in a layer of photoresist or slightly truncated by using controllable temperature melting effects. Compared to the standard microlens arrays, our designs provide up to an order of magnitude higher AOVs reaching ~8° for back-illuminated and ~20° for front-illuminated structures.