Thin-Film Nanocomposite Membrane with the Minimum Amount of MOF by the Langmuir-Schaefer Technique for Nanofiltration

ACS Appl Mater Interfaces. 2018 Jan 10;10(1):1278-1287. doi: 10.1021/acsami.7b17477. Epub 2017 Dec 26.

Abstract

An innovative procedure for positioning a monolayer of hydrophilic metal organic framework (MOF) MIL-101(Cr) (MIL, Materials of Institute Lavoisier) nanoparticles (NPs) in thin-film nanocomposite (TFN) membranes has been implemented by transferring a Langmuir-Schaefer (LS) film of the MOF in between the polyamide thin layer at the top and the cross-linked asymmetric polyimide (P84) support at the bottom. The presence and layout of the LS-MIL-101(Cr) monolayer in the TFN membrane was confirmed by scanning transmission electron microscopy imaging with a high-angle annular dark-field detector images and X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, and atomic force microscopy analyses. This methodology requires the smallest amount of MOF reported to date, 3.8 μg cm-2, and promotes the formation of a defect-free ultrathin MOF film. Although conventional TFN membranes tend to show MOF agglomerates that could contribute to the formation of unselective defects, LS-TFN membranes, characterized by a homogeneous and continuous MOF coating, exhibit an optimal membrane performance, without a significant decrease in selectivity. Outstanding methanol permeances, one of the best results reported to date, of 10.1 ± 0.5 L m-2 h-1 bar-1 when filtering sunset yellow and of 9.5 ± 2.1 L m-2 h-1 bar-1 when filtering rose bengal have been achieved in LS-TFN membranes with a rejection higher than 90% in all cases. Methanol permeates through the polyamide and the LS-MIL-101(Cr) monolayer, greatly enhanced by the MOF pore system, in comparison to thin-film composite and conventional TFN membranes (7.5 ± 0.7 and 7.7 ± 1.1 L m-2 h-1 bar-1 when filtering sunset yellow), respectively, in which polyamide areas free of MOF NPs are present.

Keywords: Langmuir−Schaefer (LS) monolayer; controlled positioning; metal organic framework (MOF); organic solvent nanofiltration (OSN); thin-film nanocomposite (TFN) membrane.