Degradation of Bioresorbable Mg-4Zn-1Sr Intramedullary Pins and Associated Biological Responses in Vitro and in Vivo

ACS Appl Mater Interfaces. 2017 Dec 27;9(51):44332-44355. doi: 10.1021/acsami.7b15975. Epub 2017 Dec 14.

Abstract

This article reports the degradation and biological properties of as-drawn Mg-4Zn-1Sr (designated as ZSr41) and pure Mg (P-Mg) wires as bioresorbable intramedullary pins for bone repair. Specifically, their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs) and degradation in vitro, and their biological effects on peri-implant tissues and in vivo degradation in rat tibiae were studied. The as-drawn ZSr41 pins showed a significantly faster degradation than P-Mg in vitro and in vivo. The in vivo average daily degradation rates of both ZSr41 and P-Mg intramedullary pins were significantly greater than their respective in vitro degradation rates, likely because the intramedullary site of implantation is highly vascularized for removal of degradation products. Importantly, the concentrations of Mg2+, Zn2+, and Sr2+ ions in the BMSC culture in vitro and their concentrations in rat blood in vivo were all lower than their respective therapeutic dosages, i.e., in a safe range. Despite of rapid degradation with a complete resorption time of 8 weeks in vivo, the ZSr41 intramedullary pins showed a significant net bone growth because of stimulatory effects of the metallic ions released. However, proportionally released OH- ions and hydrogen gas caused adverse effects on bone marrow cells and resulted in cavities in surrounding bone. Thus, properly engineering the degradation properties of Mg-based implants is critical for harvesting the bioactivities of beneficial metallic ions, while controlling adverse reactions associated with the release of OH- ions and hydrogen gas. It is necessary to further optimize the alloy processing conditions and/or modify the surfaces, for example, applying coatings onto the surface, to reduce the degradation rate of ZSr41 wires for skeletal implant applications.

Keywords: biodegradable magnesium zinc strontium (Mg−Zn−Sr) alloy; biodegradation in vitro and in vivo; bioresorbable intramedullary pin implant in rat tibia; bone remodeling; cytocompatibility and biocompatibility; microcomputed tomography (microCT or μCT).

MeSH terms

  • Absorbable Implants*
  • Alloys
  • Animals
  • Bone Marrow Cells
  • Ions
  • Magnesium
  • Rats
  • Zinc

Substances

  • Alloys
  • Ions
  • Magnesium
  • Zinc