Chemoselective Reduction of Sterically Demanding N,N-Diisopropylamides to Aldehydes

J Org Chem. 2018 Feb 16;83(4):1687-1700. doi: 10.1021/acs.joc.7b02868. Epub 2017 Dec 18.

Abstract

A sequential one-pot process for chemoselectively reducing sterically demanding N,N-diisopropylamides to aldehydes has been developed. In this reaction, amides are activated with EtOTf to form imidates, which are reduced with LiAlH(OR)3 [R = t-Bu, Et] to give aldehydes by hydrolysis of the resulting hemiaminals. The non-nucleophilic base 2,6-DTBMP remarkably improves reaction efficiency. The combination of EtOTf/2,6-DTBMP and LiAlH(O-t-Bu)3 was found to be optimal for reducing alkyl, alkenyl, alkynyl, and 2-monosubstituted aryl N,N-diisopropylamides. In contrast, EtOTf and LiAlH(OEt)3 in the absence of base were found to be optimal for reducing extremely sterically demanding 2,6-disubstituted N,N-diisopropylbenzamides. The reaction tolerates various reducible functional groups, including aldehyde and ketone. 1H NMR studies confirmed the formation of imidates stable in water. The synthetic usefulness of this methodology was demonstrated with N,N-diisopropylamide-directed ortho-metalation and C-H bond activation.

Publication types

  • Research Support, Non-U.S. Gov't