Molecular cocrystals: design, charge-transfer and optoelectronic functionality

Phys Chem Chem Phys. 2018 Feb 28;20(9):6009-6023. doi: 10.1039/c7cp07167a.

Abstract

Organic cocrystals, formed by a combination of electron-rich donors and electron-poor acceptors, play an important role in tailoring the optoelectronic properties of molecular materials. Charge transfer interactions in cocrystals not only endow them with an ordered three-dimensional (3D) supramolecular network in different constituent units, but also render them ideal scaffolds to control the intermolecular interactions in multicomponent solids. In this perspective, we firstly introduce preparation methods, molecular packing modes and charge transfer in organic cocrystals. Then, we focus on the novel and promising optoelectronic properties of organic cocrystals based on charge transfer interactions. Finally, we briefly discuss the outlook for the future development of these multicomponent crystalline materials.