Synthesis of Formate Esters and Formamides Using an Au/TiO₂-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

Nanomaterials (Basel). 2017 Dec 12;7(12):440. doi: 10.3390/nano7120440.

Abstract

A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO₂-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv) and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv) and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2-12%) from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

Keywords: Au nanoparticles; aerobic coupling; formamides; formates; paraformaldehyde.