Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1

Oncotarget. 2017 Jun 16;8(58):97941-97954. doi: 10.18632/oncotarget.18556. eCollection 2017 Nov 17.

Abstract

MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling protein with emerging roles in the regulation of DNA damage response and gene transcription, but its mechanistic role in breast cancer development and progression remains unexplored. Here, we show that MORC2 promoted breast cancer invasion and metastasis and these effects depended on a proline-rich domain (PRD) within its carboxy-terminal region spanning residues 601-734. Induced expression of wild-type MORC2 did not significantly affect cell proliferation and cell-cycle progression, but promoted breast cancer cell migration and invasion in vitro and metastatic lung colonization in vivo. The PRD domain was dispensable for the protein stability and subcellular localization of MORC2, but depletion of the PRD domain substantially suppressed MORC2-mediated migration, invasion, and metastasis. Proteomic and biochemical analyses further demonstrated that wild-type MORC2, but not PRD deletion mutant, interacted with catenin delta 1 (CTNND1), a cadherin-associated protein that participates in tumor invasion and metastasis. Moreover, knockdown of endogenous CTNND1 by short hairpin RNAs suppressed the migratory and invasive potential of MORC2-expressing cells. Taken together, these results suggest that MORC2 promotes breast cancer invasion and metastasis through its PRD domain-mediated interaction with CTNND1.

Keywords: MORC2; breast cancer; invasion and metastasis; proline-rich domain; protein-protein interaction.