The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1

Nucleic Acids Res. 2018 Jan 25;46(2):804-822. doi: 10.1093/nar/gkx1205.

Abstract

The post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional C-terminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non-covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53-PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53-DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Humans
  • K562 Cells
  • Poly (ADP-Ribose) Polymerase-1 / genetics
  • Poly (ADP-Ribose) Polymerase-1 / metabolism*
  • Poly ADP Ribosylation*
  • Protein Binding
  • Protein Domains
  • Protein Processing, Post-Translational*
  • Tumor Suppressor Protein p53 / chemistry
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • PARP1 protein, human
  • Poly (ADP-Ribose) Polymerase-1