Recombinant Vaccinia virus-coded interferon inhibitor B18R: Expression, refolding and a use in a mammalian expression system with a RNA-vector

PLoS One. 2017 Dec 7;12(12):e0189308. doi: 10.1371/journal.pone.0189308. eCollection 2017.

Abstract

B18R protein of Vaccinia virus binds to type I interferons and inhibits activation of interferon-mediated signal transduction. Cells which have unimpaired interferon signaling such as primary cell cultures or some industrially important cell lines are capable of development of an antiviral state. An establishment of the antiviral state limits replication of RNA-viruses and can suppress replication of RNA vectors. The interferon inhibitor B18R effectively prevents the establishment of the antiviral state. For this reason, B18R has become a ubiquitous component of protocols for epigenetic reprogramming which use transfections of RNA replicons or mRNA. Despite wide practical applicability, commercially available B18R is predominantly produced in cell cultures and little information has been published on a production and use of bacterially expressed B18R. Objectives of this study were to produce B18R in an E.coli expression system and to confirm the product's biological activity by using it to maintain RNA-vectors in cell cultures capable of the antiviral state. The described method allows the expression and efficient refolding to obtain 10-100 mg of B18R from a small-scale culture and the production process is economically attractive compared to a use of an eukaryotic expression. To check for a presence of the biological activity of bacterially-expressed B18R the protein was used to support persistence of an autonomously replicating RNA-vector in a cell culture which is capable of the antiviral state. A RNA-containing virus, Venezuelan equine encephalitis virus (VEE) can serve as an efficient vector for heterologous expression in cell cultures, although its replication is sensitive to the effects of type I interferons which limit a range of cell lines for a use with this vector. The VEE replicon was utilized to direct an expression of recombinant human granulocyte colony stimulating factor (G-CSF). The producing replicon could persist in HEK293 cells for sufficiently long time only in presence of B18R, whereas addition of B18R not only allowed persistence of the replicon but also increased production from the replicon. A model product granulocyte colony stimulating factor accumulated to 35.5 μg/ml during a 7 day experiment. This work describes efficacious expression and refolding of the viral cytokine inhibitor and demonstrates a utility of bacterially-expressed B18R.

MeSH terms

  • Chromatography, Gel
  • Electrophoresis, Polyacrylamide Gel
  • Genetic Vectors*
  • HEK293 Cells
  • Humans
  • Protein Folding
  • RNA, Viral / genetics*
  • Recombinant Proteins / genetics
  • Vaccinia virus / genetics*
  • Viral Proteins / chemistry
  • Viral Proteins / genetics*

Substances

  • RNA, Viral
  • Recombinant Proteins
  • Viral Proteins
  • B18R protein, Vaccinia virus

Grants and funding

This work was supported by a funding from Ministry of Education and Science of the Republic of Kazakhstan by grants with numbers 0115RK01788 and 0214RK02428.