Warhead biosynthesis and the origin of structural diversity in hydroxamate metalloproteinase inhibitors

Nat Commun. 2017 Dec 6;8(1):1965. doi: 10.1038/s41467-017-01975-6.

Abstract

Metalloproteinase inhibitors often feature hydroxamate moieties to facilitate the chelation of metal ions in the catalytic center of target enzymes. Actinonin and matlystatins are potent metalloproteinase inhibitors that comprise rare N-hydroxy-2-pentyl-succinamic acid warheads. Here we report the identification and characterization of their biosynthetic pathways. By gene cluster comparison and a combination of precursor feeding studies, heterologous pathway expression and gene deletion experiments we are able to show that the N-hydroxy-alkyl-succinamic acid warhead is generated by an unprecedented variation of the ethylmalonyl-CoA pathway. Moreover, we present evidence that the remarkable structural diversity of matlystatin congeners originates from the activity of a decarboxylase-dehydrogenase enzyme with high similarity to enzymes that form epoxyketones. We further exploit this mechanism to direct the biosynthesis of non-natural matlystatin derivatives. Our work paves the way for follow-up studies on these fascinating pathways and allows the identification of new protease inhibitors by genome mining.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcysteine / analogs & derivatives
  • Acetylcysteine / antagonists & inhibitors
  • Acetylcysteine / chemistry
  • Actinobacteria / genetics
  • Actinobacteria / metabolism
  • Acyl Coenzyme A
  • Biosynthetic Pathways / genetics
  • Carboxy-Lyases
  • Gene Deletion
  • Gene Expression Profiling
  • Gene Expression Regulation, Bacterial
  • Genes, Bacterial / genetics
  • Hydroxamic Acids / antagonists & inhibitors
  • Hydroxamic Acids / chemistry
  • Hydroxamic Acids / metabolism
  • Matrix Metalloproteinase Inhibitors / chemistry*
  • Matrix Metalloproteinase Inhibitors / metabolism*
  • Matrix Metalloproteinase Inhibitors / pharmacology
  • Metalloproteases / drug effects*
  • Multigene Family
  • Ornithine / metabolism
  • Oxidoreductases
  • Propionates / metabolism
  • Protease Inhibitors / chemistry*
  • Protease Inhibitors / metabolism*
  • Protease Inhibitors / pharmacology
  • Pyridazines / antagonists & inhibitors
  • Pyridazines / chemistry
  • Pyridazines / metabolism
  • Sequence Deletion
  • Streptomyces / genetics
  • Streptomyces / metabolism

Substances

  • Acyl Coenzyme A
  • Hydroxamic Acids
  • Matrix Metalloproteinase Inhibitors
  • Propionates
  • Protease Inhibitors
  • Pyridazines
  • ethylmalonyl-coenzyme A
  • matlystatin A
  • matlystatin D
  • matlystatin E
  • matlystatin F
  • matlystatin B
  • Ornithine
  • Oxidoreductases
  • Metalloproteases
  • Carboxy-Lyases
  • actinonin
  • Acetylcysteine