Image quality assessment of silent T2 PROPELLER sequence for brain imaging in infants

Br J Radiol. 2018 Feb;91(1083):20170680. doi: 10.1259/bjr.20170680. Epub 2017 Dec 22.

Abstract

Objective: Infants are vulnerable to high acoustic noise. Acoustic noise generated by MR scanning can be reduced by a silent sequence. The purpose of this study is to compare the image quality of the conventional and silent T2 PROPELLER sequences for brain imaging in infants.

Methods: A total of 36 scans were acquired from 24 infants using a 3 T MR scanner. Each patient underwent both conventional and silent T2 PROPELLER sequences. Acoustic noise level was measured. Quantitative and qualitative assessments were performed with the images taken with each sequence.

Results: The sound pressure level of the conventional T2 PROPELLER imaging sequence was 92.1 dB and that of the silent T2 PROPELLER imaging sequence was 73.3 dB (reduction of 20%). On quantitative assessment, the two sequences (conventional vs silent T2 PROPELLER) did not show significant difference in relative contrast (0.069 vs 0.068, p value = 0.536) and signal-to-noise ratio (75.4 vs 114.8, p value = 0.098). Qualitative assessment of overall image quality (p value = 0.572), grey-white differentiation (p value = 0.986), shunt-related artefact (p value > 0.999), motion artefact (p value = 0.801) and myelination degree in different brain regions (p values ≥ 0.092) did not show significant difference between the two sequences.

Conclusion: The silent T2 PROPELLER sequence reduces acoustic noise and generated comparable image quality to that of the conventional sequence. Advances in knowledge: This is the first report to compare silent T2 PROPELLER images with that of conventional T2 PROPELLER images in children.

Publication types

  • Comparative Study

MeSH terms

  • Equipment Safety
  • Female
  • Humans
  • Image Enhancement / methods*
  • Infant
  • Magnetic Resonance Imaging / methods*
  • Male
  • Neuroimaging / methods*
  • Noise*
  • Signal-To-Noise Ratio