Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

Angew Chem Int Ed Engl. 2018 Jan 22;57(4):909-913. doi: 10.1002/anie.201708092. Epub 2018 Jan 2.

Abstract

Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

Keywords: atomic layer deposition (ALD); heterogeneous catalysis; metal-organic frameworks (MOFs); platinum; sinter-resistance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.