Johnson Solids: Anion-Templated Silver Thiolate Clusters Capped by Sulfonate

Chemistry. 2018 Feb 1;24(7):1640-1650. doi: 10.1002/chem.201704298. Epub 2017 Dec 28.

Abstract

Sulfonates were incorporated into six novel high-nuclearity silver(I) thiolate clusters under the guidance of anion templates varied from S2- , SO42- , α-[Mo5 O18 ]6- , β-[Mo5 O18 ]6- , [Mo2 O8 ]4- , to [Mo4 O14 (SO4 )]6- . Single crystal X-ray analysis revealed that SD/Ag1, SD/Ag3, SD/Ag5, and SD/Ag6 are discrete [S@Ag60 ], [α-Mo5 O18 @Ag36 ], [Mo2 O8 @Ag30 ]2 , and [Mo4 O14 (SO4 )@Ag73 ] clusters, respectively, whereas SD/Ag2 and SD/Ag4 are one-dimensional (1D) chains based on the [SO4 @Ag20 ] and [β-Mo5 O18 @Ag36 ] cluster subunits, respectively. Their silver skeletons are protected exteriorly by thiolates and sulfonates and interiorly supported by diverse anions as templates. Structurally, cluster SD/Ag1 is a typical core-shell structure comprised of an inner Ag12 cuboctahedron and an outer Ag48 shell. The sulfate-templated drum-like Ag20 cluster subunits are bridged by PhSO3- to give a 1D chain of SD/Ag2. Complex SD/Ag3 and SD/Ag4 are spindle-like Ag36 clusters with isomeric [Mo5 O18 ]6- inside, and the latter is further extended to a 1D chain through PhSO3- bridges. A pair of [Mo2 O8 ]4- templated gourd-like Ag30 clusters are dimerized in a head-to-head fashion to form SD/Ag5. Complex SD/Ag6 is the largest cluster in this family and doubly templated by unprecedented [Mo4 O14 (SO4 )]6- anions. Geometrically, the silver shells of SD/Ag1-SD/Ag5 show the polyhedral features of Johnson solids, instead of the usual Platonic or Archimedean solids. Solution behaviors and luminescent properties were also investigated in detail.

Keywords: Johnson solids; luminescence; silver(I) cluster; solution behavior.