Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?

Dent Mater. 2018 Jan;34(1):161-169. doi: 10.1016/j.dental.2017.11.019. Epub 2017 Dec 6.

Abstract

Objectives: Polymerization shrinkage of resin composite restorations can cause debonding at the tooth-restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements.

Methods: A commercial dental resin composite with linear shrinkage strain of 0.8% was used to restore 2 groups of 5 model Class-II cavities (8-mm long, 4-mm wide and 4-mm deep) in aluminum blocks (8-mm thick, 10-mm wide and 14-mm tall). Group I had the restorations bonded to all cavity surfaces, while Group II had the restorations not bonded to the cavity floor to simulate debonding. One of the proximal surfaces of each specimen was sprayed with fine carbon powder to allow surface displacement measurement by Digital Image Correlation. Images of the speckled surface were taken before and after cure for displacement calculation. The experiment was simulated using finite element analysis (FEA) for comparison.

Results: Group I showed a maximum occlusal displacement of 34.7±6.7μm and a center of contraction (COC) near the pulpal floor. Group II had a COC coinciding with the geometric center and showed a maximum occlusal displacement of 17.4±3.8μm. The difference between the two groups was statistically significant (p-value=0.0007). Similar results were obtained by FEA. The theoretical shrinkage displacement was 44.6 and 22.3μm for Group I and II, respectively. The lower experimental displacements were probably caused by slumping of the resin composite before cure and deformation of the adhesive layer.

Significance: The results confirmed that the occlusal shrinkage displacement of a resin composite restoration was reduced significantly by pulpal floor debonding. Recent in vitro studies seem to indicate that this reduction in shrinkage displacement could be detected by using the most accurate intraoral scanners currently available. Thus, subject to clinical validation, the occlusal displacement of a resin composite restoration may be used to assess its interfacial integrity.

Keywords: Debonding; Dental restoration; Intraoral scanner; Polymerization shrinkage; Resin composite.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylic Resins / chemistry*
  • Composite Resins / chemistry*
  • Dental Cavity Preparation
  • Dental Cements
  • Dental Marginal Adaptation
  • Dental Restoration Failure*
  • Dental Restoration, Permanent / methods*
  • Elastic Modulus
  • Finite Element Analysis
  • Image Processing, Computer-Assisted
  • Light-Curing of Dental Adhesives
  • Materials Testing
  • Polymerization
  • Polyurethanes / chemistry*
  • Surface Properties

Substances

  • Acrylic Resins
  • Adper single bond 2
  • Composite Dental Resin
  • Composite Resins
  • Dental Cements
  • Polyurethanes