Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views

J Neurosci. 2018 Jan 17;38(3):659-678. doi: 10.1523/JNEUROSCI.1318-17.2017. Epub 2017 Dec 1.

Abstract

We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept.SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on the retina. The lateral occipital complex (LOC) represents shape faithfully in such conditions even if the object is partially occluded. However, shape must sometimes be reconstructed over both space and time. Such is the case in anorthoscopic perception, when an object is moving behind a narrow slit. In this scenario, spatial information is limited at any moment so the whole-shape percept can only be inferred by integration of successive shape views over time. We find that LOC carries shape-specific information recovered using such temporal integration processes. The shape representation is invariant to slit orientation and is similar to that evoked by a fully viewed image. Existing models of object recognition lack such capabilities.

Keywords: anorthoscopic viewing; fMRI; lateral occipital complex; multivoxel pattern analysis; object shapes; temporal integration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation
  • Visual Cortex / physiology*