Tin and Lead Phosphanido Complexes: Reactivity with Chalcogens

Inorg Chem. 2017 Dec 18;56(24):14831-14841. doi: 10.1021/acs.inorgchem.7b02040. Epub 2017 Nov 30.

Abstract

The reactivity of tin and lead phosphanido complexes with chalogens is reported. The addition of sulfur to [(BDI)MPCy2] (M = Sn, Pb; BDI = CH{(CH3)CN-2,6-iPr2C6H3}2) results in the formation of phosphinodithioates [(BDI)MSP(S)Cy2] regardless of the conditions; however, when selenium is added to [(BDI)MPCy2], a selenium insertion product, phosphinoselenoite [(BDI)MSePCy2], can be isolated. This compound readily reacts with additional selenium to form the phosphinodiselenoate complex [(BDI)MSeP(Se)Cy2]. In contrast, the addition of selenium to [(BDI)SnP(SiMe3)2] results in the formation of the heavy ether [(BDI)SnSeSiMe3]. Differences in the solution and solid-state molecular species of tin phosphinoselenoite and phosphinodiselenoate complexes were probed using multinuclear solution and solid-state NMR spectroscopy.