On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol upon Lateral Compression and Spacer Length Variation

ACS Appl Mater Interfaces. 2017 Dec 20;9(50):44181-44191. doi: 10.1021/acsami.7b13042. Epub 2017 Dec 11.

Abstract

The supramolecular structure essentially determines the properties of organic thin films. Therefore, it is of utmost importance to understand the influence of molecular structure modifications on supramolecular structure formation. In this article, we demonstrate how to tune molecular orientations of amphiphilic 4-hydroxy thiazole derivatives by means of the Langmuir-Blodgett (LB) technique and how this depends on the length of an alkylic spacer between the thiazole chromophore and the polar anchor group. Therefore, we characterize their corresponding supramolecular structures, thermodynamic, absorption, and fluorescence properties. Particularly, the polarization-dependence of the fluorescence is analyzed to deduce molecular orientations and their possible changes after annealing, i.e., to characterize the thermodynamic stability of the individual solid state phases. Because the investigated thiazoles are amphiphilic, the different solid state phases can be formed and be controlled by means of the Langmuir-Blodgett (LB) technique. This technique also allows to deduce atomistic supramolecular structure motives of the individual solid phases and to characterize their thermodynamic stabilities. Utilizing the LB technique, we demonstrate that subtle molecular changes, like the variation in spacer length, can yield entirely different solid state phases with distinct supramolecular structures and properties.

Keywords: Langmuir−Blodgett; Langmuir−Blodgett hysteresis; Langmuir−Blodgett isotherms; OLED; molecular orientation; supramolecular structure; thermodynamic stability; thiazoles.