Ecto-ADP-ribosyltransferase ARTC2.1 functionally modulates FcγR1 and FcγR2B on murine microglia

Sci Rep. 2017 Nov 28;7(1):16477. doi: 10.1038/s41598-017-16613-w.

Abstract

Mammalian ecto-ADP-ribosyltransferases (ecto-ARTs or also ARTCs) catalyze the ADP-ribosylation of cell surface proteins using extracellular nicotinamide adenine dinucleotide (NAD+) as substrate. By this post-translational protein modification, ecto-ARTs modulate the function of various target proteins. A functional role of ARTC2 has been demonstrated for peripheral immune cells such as T cells and macrophages. Yet, little is known about the role of ecto-ARTs in the central nervous system and on microglia. Here, we identified ARTC2.1 as the major ecto-ART expressed on murine microglia. ARTC2.1 expression was strongly upregulated on microglia upon co-stimulation with LPS and an ERK1/2 inhibitor or upon IFNβ stimulation. We identified several target proteins modified by ARTC2.1 on microglia with a recently developed mass spectrometry approach, including two receptors for immunoglobulin G (IgG), FcγR1 and FcγR2B. Both proteins were verified as targets of ARTC2.1 in vitro using a radiolabeling assay with 32P-NAD+ as substrate. Moreover, ADP-ribosylation of both targets strongly inhibited their capacity to bind IgG. In concordance, ARTC2.1 induction in WT microglia and subsequent cell surface ADP-ribosylation significantly reduced the phagocytosis of IgG-coated latex beads, which was unimpaired in NAD+/DTT treated microglia from ARTC2.1-/- mice. Hence, induction of ARTC2.1 expression under inflammatory conditions, and subsequent ADP-ribosylation of cell surface target proteins could represent a hitherto unnoticed mechanism to regulate the immune response of murine microglia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ADP Ribose Transferases / genetics
  • ADP Ribose Transferases / metabolism*
  • Animals
  • Carrier Proteins
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Enzyme Activation
  • Gene Expression
  • Interferon-beta / metabolism
  • Lipopolysaccharides / immunology
  • Mice
  • Microglia / immunology
  • Microglia / metabolism*
  • Phagocytosis / immunology
  • Protein Binding
  • Protein Interaction Mapping
  • Receptors, IgG / metabolism*

Substances

  • Carrier Proteins
  • Fcgr1 protein, mouse
  • Fcgr2b protein, mouse
  • Lipopolysaccharides
  • Receptors, IgG
  • Interferon-beta
  • ADP Ribose Transferases