Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication

FASEB J. 2018 Apr;32(4):1969-1981. doi: 10.1096/fj.201700876R. Epub 2018 Jan 5.

Abstract

Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue's metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels-the major isoform in the heart and brain-is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel-mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid-base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.-Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication.

Keywords: acid–base; brain; electrical synapse; gap junctions; heart.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Communication
  • Connexin 43 / chemistry
  • Connexin 43 / metabolism*
  • HeLa Cells
  • Humans
  • Hydrogen-Ion Concentration
  • Ion Channel Gating*
  • Mice
  • Protons*

Substances

  • Connexin 43
  • Protons