Change in the Crystallite Orientation of Poly(ethylene oxide)/Cellulose Nanofiber Composite Films

Biomacromolecules. 2017 Dec 11;18(12):4411-4415. doi: 10.1021/acs.biomac.7b01434. Epub 2017 Nov 27.

Abstract

The crystallite orientation and crystallographic domain structure of poly(ethylene oxide) (PEO) in cellulose nanofiber-incorporated (CNF-incorporated) PEO films developed for packaging materials were observed using wide-angle X-ray diffraction for different CNF filling ratios. When a CNF filling ratio of <10 wt % was used, the molecular chains in the PEO crystallite region were oriented in a direction perpendicular to the surface of the film; however, when the ratio was >50 wt %, the PEO molecular chains were oriented in a direction parallel to the surface of the film. The fiber axis of the CNFs became parallel to the surface of the PEO/CNF composite film when the filling ratio was >25 wt %. The change in the orientation of the PEO crystals occurred because increasing the amount of CNF in the composite films decreased the space in which the PEO could be crystallized. Furthermore, the hydrogen bonds between the PEO and the CNF may behave as crystallization nuclei for the PEO. Our results thus pave the way toward the development of packaging materials that are more impermeable to gases than the current materials.

MeSH terms

  • Biocompatible Materials / chemistry
  • Cellulose / chemistry*
  • Crystallization / methods
  • Hydrogen Bonding
  • Nanofibers / chemistry*
  • Polyethylene Glycols / chemistry*
  • X-Ray Diffraction / methods

Substances

  • Biocompatible Materials
  • Polyethylene Glycols
  • Cellulose