Resting state fMRI connectivity analysis as a tool for detection of abnormalities in five different cognitive networks of the brain in Multiple Sclerosis patients

Clin Case Rep Rev. 2016 Sep;2(9):464-471. doi: 10.15761/CCRR.1000S1001. Epub 2016 Jul 30.

Abstract

Objectives: Cognitive dysfunction is present in at least half of patients with Multiple Sclerosis. The purpose of this study was to examine functional connectivity abnormalities in patients with multiple sclerosis (MS) using resting state fMRI (rsfMRI).

Methods: Conventional MRI, rsfMRI and diffusion tensor imaging (DTI) data was acquired from 10 patients with relapsing-remitting multiple sclerosis (RRMS) and 20 healthy controls. Cross-correlation of the resting state average signal among the voxels in each brain region of the five cognitive networks: default mode network (DMN), attention, verbal memory, memory, and visuospatial working memory network, was calculated. Voxelwise analyses were used to investigate fractional anisotropy (FA) of white matter tracts. The normalized gray matter (GM), white matter and thalamus volumes were calculated.

Results: Compared to controls, significant deficit in MS patients at each of five networks, attention (p=0.026), DMN (p=0.004), verbal memory (p<0.001), memory (p=0.001), visuospatial working memory (p=0.003) was found. Significant reduction (p=0.034) in the normalized GM volume and asymmetry in thalamus volume (p=0.041) was detected in MS patients compared to controls.

Conclusion: Wide spread of functional abnormalities are present within different cognitive networks in patients with RRMS, suggesting that DMN may not be sufficient for measurement of MS cognitive impairment. Larger and longitudinal studies should ascertain whether rsfMRI of cognitive networks and changes in GM and thalamus volume can be used as tools for assessment of cognition in clinical trials in MS.

Keywords: cognition; diffusion tensor imaging (DTI); fractional anisotropy; multiple sclerosis (MS); resting state fMRI; thalamus volume.