Identification of molecular mechanisms of glutamine in pancreatic cancer

Oncol Lett. 2017 Dec;14(6):6395-6402. doi: 10.3892/ol.2017.7068. Epub 2017 Sep 26.

Abstract

The aim of the present study was to explore the critical genes and molecular mechanisms in pancreatic cancer (PC) cells with glutamine. By analyzing microarray data GSE17632 from the Gene Expression Omnibus database, the DEGs between PC cells treated with glutamine and without glutamine were evaluated. Additionally, function enrichment analyses and protein-protein interaction (PPI) network construction of DEGs were performed. Network module and literature mining analyses were performed to analyze the critical DEGs in PC cells. In total, 495 genes were selected as DEGs between control and glutamine cells in PC. These DEGs were mainly enriched in several Gene Ontology (GO) terms in biological process, cellular components and molecular function. Additionally, they were also enriched in certain pathways, including metabolic pathways and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. MYC, heat shock 70kDa protein 5 (HSPA5), interleukin 8 (IL8), and chemokine (C-X-C motif) receptor 4 (CXCR4) were hub genes in the PPI network. Furthermore, two sub-network modules of PPI network and two co-occurrence networks were obtained. The DEGs of MYC, HSPA5, IL18 and CXCR4 may exert important roles in molecular mechanisms of PC cells with glutamine.

Keywords: differentially-expressed gene; enrichment analysis; glutamine; pancreatic cancer; protein-protein interaction network.