Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether

Chem Cent J. 2017 Nov 21;11(1):117. doi: 10.1186/s13065-017-0347-4.

Abstract

Background: 1,2,4-Triazoles and 1,2,3-triazoles have gained significant importance in medicinal chemistry.

Results: This study describes a green, efficient and quick solvent free click synthesis of new 1,2,3-triazole-4,5-diesters carrying a lipophilic side chain via 1,3-dipolar cycloaddition of diethylacetylene dicarboxylate with different surfactant azides. Further structural modifications of the resulting 1,2,3-triazole diesters to their corresponding 1,2,4-triazole-3-thiones via multi-step synthesis has been also investigated. The structures of the newly designed triazoles have been elucidated based on their analytical and spectral data. These compounds were evaluated for their antimicrobial activities. Relative to the standard antimicrobial agents, derivatives of 1,2,3-triazole-bis-4-amino-1,2,4-triazole-3-thiones were the most potent antimicrobial agents with compound 7d demonstrating comparable antibacterial and antifungal activities against all tested microorganisms. Further, the selected compounds were studied for docking using the enzyme, Glucosamine-6-phosphate synthase.

Conclusions: The in silico study reveals that all the synthesized compounds had shown good binding energy toward the target protein ranging from - 10.49 to - 5.72 kJ mol-1 and have good affinity toward the active pocket, thus, they may be considered as good inhibitors of GlcN-6-P synthase.

Keywords: 1,2,3-triazole-1,2,4-triazole hybrids; Antimicrobial activity; Click chemistry; Lipophilic side chain; Molecular docking.