How Are Proteins Reduced in the Endoplasmic Reticulum?

Trends Biochem Sci. 2018 Jan;43(1):32-43. doi: 10.1016/j.tibs.2017.10.006. Epub 2017 Nov 15.

Abstract

The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.

Keywords: ER chaperones; ER-associated degradation; disulfides; endoplasmic reticulum; protein folding; thiol reduction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Endoplasmic Reticulum / metabolism*
  • Humans
  • Oxidation-Reduction
  • Protein Folding
  • Proteins / chemistry*
  • Proteins / metabolism*

Substances

  • Proteins