Investigation of the conformational flexibility of DGAT1 peptides using tryptophan fluorescence

Methods Appl Fluoresc. 2015 Mar 27;3(2):025003. doi: 10.1088/2050-6120/3/2/025003.

Abstract

The conformational behavior of synthetic peptides corresponding to the putative binding sites of the diacylglycerol acyltransferase 1 enzyme (a polytopic integral membrane protein) was investigated using steady-state and time-resolved fluorescence spectroscopies. Three small linear peptides with 13, 15 and 22 amino acid residues, containing one, two and three Trp residues, respectively, were studied in aqueous solution, in the absence and presence of model membranes. The high flexibility and unordered conformation of the peptides in solution were confirmed by the low Trp polarization values, the high accessibility to water-soluble quencher, and the fast rotational correlation times of the Trp residues. However, upon binding to the lipid systems, the Trp residues were incorporated within the acyl hydrophobic core and their lifetimes and rotational correlation times increased. Phasor plots were employed to analyze intensity decay of peptide-lipid binding and provided a trajectory, in phasor space, that lies along a line connecting the points of the free and bound peptide. This trajectory was analyzed to determine the association constant of the peptide to the model membrane.